Michaelis-Menten Parameter Estimation Methods determine Km and Vmax values using graphical and computational approaches.
Michaelis-Menten Parameter Estimation Methods
- Several methods estimate Vmax and Km from experimental data:
-
Lineweaver-Burk Plot (Double Reciprocal Plot)
- By taking the reciprocal of the Michaelis-Menten equation:
- $\frac{1}{V} = \frac{K_m}{V_{\text{max}}} \cdot \frac{1}{[S]} + \frac{1}{V_{\text{max}}}$
- Plot 1/V 1/[S], resulting in a straight line.
- Slope = Km/Vmax, y-intercept = 1/Vmax, x-intercept = -1/Km.
- By taking the reciprocal of the Michaelis-Menten equation:
-
Direct Linear (Hanes-Woolf) Plot
- Multiplying both sides of the Michaelis-Menten equation by [S] gives:
- $\frac{[S]}{V} = \frac{[S]}{V_{\text{max}}} + \frac{K_m}{V_{\text{max}}}$
- Plot [S]/V [S], yielding a straight line.
- Slope = 1/Vmax, y-intercept = Km/Vmax.
- Multiplying both sides of the Michaelis-Menten equation by [S] gives:
-
Eadie-Hofstee Plot
- Rearranging the equation:
- $V = -\frac{V_{\text{max}}}{K_m} \cdot \frac{V}{[S]} + V_{\text{max}}$
- Plot V V/[S], producing a straight line.
- Slope = -Km, y-intercept = Vmax.
- Rearranging the equation:
-
Hanes-Woolf Plot
- Rewriting the equation:
- $\frac{[S]}{V} = \frac{[S]}{V_{\text{max}}} + \frac{K_m}{V_{\text{max}}}$
- Plot [S]/V [S].
- Slope = 1/Vmax, y-intercept = Km/Vmax.
- Rewriting the equation:
Click Here to Watch the Best Pharma Videos!