Temperature

Effect of Temperature:

  • As Temperature increases, the rate of degradation increases.
  • Described by Arrhenius equation:

$k = A \cdot e^{-\tfrac{E_a}{RT}}$

Advertisements
  • Where:
    • k = rate constant
    • A = frequency factor
    • Ea​ = activation energy (J/mol or cal/mol)
    • R = gas constant (8.314 J/mol·K or 1.987 cal/mol·K)
    • T = temperature in Kelvin

Implications:

  • Helps estimate shelf life at room temperature from accelerated stability testing.
  • Degradation doubles with every ~10°C increase.
Advertisements

Problem: Arrhenius Equation

Given:

  • $k_{1} = 2 \times 10^{-3} \,\text{min}^{-1}$
  • $k_{2} = 4 \times 10^{-3}\,\text{min}^{-1}$
  • Find activation energy Ea ​

Solution:

  • Use two-point form of Arrhenius equation:
Advertisements

$\ln\!\left(\frac{k_{2}}{k_{1}}\right) = \frac{-E_{a}}{R} \left(\frac{1}{T_{2}} – \frac{1}{T_{1}}\right)$

  • Convert °C to K:
    • $T_{1} = 298 ,\; T_{2} = 308 ,\; T2 = 308 \; K$

$\ln\!\left(\tfrac{4 \times 10^{-3}}{2 \times 10^{-3}}\right) = \tfrac{-E_a}{8.314}\left(\tfrac{1}{308} – \tfrac{1}{298}\right)$

Advertisements

$\ln(2) = \frac{-E_a}{8.314}\,(-0.0001087)$

$0.693 = \frac{E_a \times 0.0001087}{8.314}$

$0.693 = 8.314 \, E_a \times 0.0001087$

Advertisements

$$E_a = \frac{0.693 \times 8.314}{0.0001087} \approx 53{,}000 \,\text{J/mol} = \boxed{53 \,\text{kJ/mol}}$$

Click Here to Watch the Best Pharma Videos!

Leave a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.